NOVEL LITHIUM CATION COMPLEXANTS

by Jean Grandjean and Pierre Laszlo[×](a), J.P. Picavet and Henri Sliwa[×](b) (a) Université de Liège - Sart-Tilman par 4000 Liège 1 - Belgium (b) Université des Sciences et Techniques de Lille, 59650 Villeneuve d'Ascq - France.

(Received in UK 21 March 1978; accepted for publication 28 March 1978)

Two of us have recently prepared¹ new derivatives of 1,10-dioxa-4,7-diaza-11-phosphacycloundecane (1).

We report here the complexing aptitude of these crowns 1,2 towards alkali metal cations. Complexation induces downfield shifts of the proton resonances measured with a Varian T-60 spectrometer (Fig.) (Table).

Using the observed 1:1 stoichiometry, we have extracted² from the data in acctonitrile solution at 35°C the stability constants K and the limiting chemical shift $\delta_{\rm B}$ in the bound form. The K values obtained from the best fits of the theoretical curves to the experimental points indicate strong binding of the lithium cation (K > 300 M⁻¹), while the sodium (K = 8-10 M⁻¹) and potassium (K = 5 M⁻¹) complexes of these 11-crown-5 analogs (1) are rather weak. Several lithium complexes with crown ethers³⁻⁶, cyclic decapeptides⁷ and cryptands⁸ have been characterized. But such a selectivity towards lithium as we find here has only been reported with 12-crown-4⁴, 14-crown-4^{3,5}, and the (2.1.1) cryptand⁸. With a diameter of ca.

1862	

R	salt	resonance	$\delta_{B}(Hz)^{a}$	∆δ(Hz) ^b	К(М ⁻¹) ^с
C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ CH ₃ CH ₃	LiC10 ₄ NaC10 ₄ NaSCN NaSCN NaSCN	NCH ₃ NCH ₃ NCH ₃ NCH ₃ OCH ₃	143.6 137.7 139.9 139.9 208.7	10.1 4.2 6.4 6.2 9.9	> 300 10 8 9 8
с ₂ н ₅	KSCN	NCH ₃	136.3	2.8	5
^{a)} \pm 0.4 Hz, downfield from TMS ^{b)} \pm 0.6 Hz ^{c)} at 35°C, \pm 15%					

fable : su	mmary of	the	results
------------	----------	-----	---------

1.2 Å, the lithium ion can fit into a cavity of 1.2-1.6 Å 3 . Strong interactions with Li⁺ are indeed observed with 11-crown-5, 12-crown-4, 14-crown-4, and the (2.1.1) cryptand, whose hole dimensions are within this range.

The lithium-complexing avidity of (1) should be extremely useful for synthetic purposes. A number of important alkylation reactions have rates and/or products very much dependent upon the structure of the lithium ion pairs present⁹. Derivatives of this type could be used, in conjunction with 12-crown-4¹⁰, to drive such reactions towards formation of specific products.

ACKNOWLEDGMENTS.

This work is part of the program "Binding of ions by organic and bio-molecules" subsidized by Fonds de la Recherche Fondamentale Collective, Belgium.

REFERENCES.

- (1) H. Sliwa and J.P. Picavet, Tetrahedron Letters, 1583 (1977).
- (2) D. Live and S.I. Chan, J. Am. Chem. Soc., <u>98</u>, 3769 (1976).
- (3) J.J. Christensen, D.J. Eatough, and R.M. Izatt, Chem. Rev., 74, 351 (1974).
- (4) F.A.L. Anet, J. Krane, J. Dale, K. Daasvatn and P.O. Kristiansen, Acta Chem. Scand., <u>27</u>, 3395 (1973).
- (5) C.J. Pedersen, Fed. Proc. (Fed. Am. Soc. Exp. Biol.), 27, 1305 (1968).
- (6) J. Dale and J. Krane, J. Chem. Soc., Chem. Comm., 1012 (1972).
- (7) I.L. Karle, J. Am. Chem. Soc., <u>96</u>, 4000 (1974).
- (8) J.M. Lehn and J.P. Sauvage, Chem. Comm., 440 (1971); J. Am. Chem. Soc., <u>97</u>, 6700 (1975).
- (9) For instance : J.C. Dalton and B.G. Stokes, Tetrahedron Letters, 3179 (1975);
 T.M. Chan and B.S. Ong, Tetrahedron Letters, 319 (1976).
- (10) C. Ouannès, G. Dressaire and Y. Langlois, Tetrahedron Letters, 815 (1977).